Update on management of metastatic brain disease

Peter Hoskin Mount Vernon Cancer Centre Northwood UK

Incidence

- 15-30% of patients with solid tumours will develop brain metastases
- Most common primary sites are:
 - Lung
 - Breast
 - Melanoma
 - Renal
 - Colorectal

Diagnosis of brain metastases

- CT scan: screening
 - Will detect lesions 3-4mm
 - Oedema may be prominent with midline shift
 - Lung and breast often similar to normal brain
 - Most enhance with IV contrast
 - On CT approximately 50% will be solitary
- MR scan: definitive
 - More sensitive
 - 10% have haemorrhage
 - Gadolinium enhanced MR will identify multiple metastases in 2-11% of CT defined solitary mets
 - Functional MR may have a role

Management of brain metastases

Solitary metastases

- Surgery alone
- Surgery + post op radiotherapy
 - + WBRT
 - + SRS
- RT alone
 - Whole brain radiotherapy
 - Radiosurgery

Surgery + post op radiotherapy

Surgery + post op radiotherapy

A European Organisation for Research and Treatment of Cancer Phase III Trial of Adjuvant Whole-Brain Radiotherapy Versus Observation in Patients With One to Three Brain Metastases From Solid Tumors After Surgical Resection or Radiosurgery: Quality-of-Life Results

Riccardo Soffietti, Martin Kocher, Ufuk M. Abacioglu, Salvador Villa, François Fauchon, Brigitta G. Baumert,

J Clin Oncol 31:65-72. © 2012

Radiosurgery or Surgery for 1-3 metastases

Assessment Time	No. of Forms Received	No. of Forms Expected	Compliance Rate (%)	
Baseline	317	359	88.3	
WBRT	162	180	90.0	
OBS	155	179	86.6	
8 weeks	206	333	61.9	
WBRT	105	169	62.1	
OBS	101	164	61.6	
3 months	156	262	59.5	
WBRT	81	133	60.9	
OBS	75	129	58.1	
6 months	107	210	51.0	
WBRT	53	105	50.5	
OBS	54	105	51.4	
9 months	88	170	51.8	
WBRT	45	87	51.7	
OBS	43	83	51.8	
12 months	65	144	45.1	
WBRT	29	73	39.7	
OBS	36	71	50.7	

J Clin Oncol 31:65-72. @ 2012

Solitary metastases

Surgery alone

Surgery + post op radiotherapy

RT alone

- Whole brain radiotherapy
- Radiosurgery

Solitary brain metastases: RadioSurgery

• Gammaknife

 Stereotactic linear accelerator techniques

Surgery vs SRS

• No RCT: three retrospective analyses

Muacevic	Schoggl	McNeil
n=108	n=133	n=97

All subject to selection bias No difference for survival or Local control shown

Randomised trials of SRS vs WBRT + SRS

	N	Number of lesions	12-month local tumour control	12-month brain tumour recurrence	Median survival (months)
Radiation Therapy Oncology Group 95-08 ² (N=331)					
Whole-brain radiotherapy plus stereotactic radiosurgery	164	1-3	82%	25%	6.5
Whole-brain radiotherapy alone	167	1-3	71%	30%	5.7
Japanese Radiation Oncology Study Group 99-1 ²² (N=132)					
Stereotactic radiosurgery plus whole-brain radiotherapy	65	1-4	88.7%	47%	7.5
Stereotactic radiosurgery alone	67	1-4	72.5%	76%	8.0
M D Anderson Cancer Center (N=58)					
Stereotactic radiosurgery plus whole-brain radiotherapy	28	1-3	100%	27%	5.7
Stereotactic radiosurgery alone	30	1-3	67%	73%	15.2

Whole brain radiation therapy (WBRT) alone versus WBRT and radiosurgery for the treatment of brain metastases

Patil CG, Pricola K, Sarmiento JM, Garg SK, Bryant A, Black KL

2014 The Cochrane Collaboration.

Study or subgroup	WBRT + SRS	WBRT	log [Hazard Ratio]	Hazard Ratio	Weight	Hazard Ratio
	N	N	(SE)	IV,Kandom,95% Cl		IV,Random,95% Cl
Andrews 2004	164	167	-1.08 (0.44)		56.4 %	0.34 [0.14, 0.80]
Kondziolka 1999	13	14	-1.58 (0.5)	←_	43.6 %	0.21 [0.08, 0.55]
Total (95% CI)	177	181		•	100.0 %	0.27 [0.14, 0.52]
Heterogeneity: Tau ² =	0.0; Chi ² = 0.56, df =	I (P = 0.45)	; 1 ² =0.0%			
Test for overall effect: Z	Z = 3.93 (P = 0.00008	35)				
Test for subgroup differ	rences: Not applicable					
				0.1 0.2 0.5 1 2 5 10		
Local contr	OI		1	Favors WBRT + SRS Favors WBRT		
Study or subgroup	WBRT + SRS	WBRT	log [Hazard Ratio]	Hazard Ratio	Weight	Hazard Ratio
Study or subgroup	WBRT + SRS N	WBRT N	log [Hazard Ratio] (SE)	Hazard Ratio IV,Random,95% Cl	Weight	Hazard Ratio IV,Random,95% Cl
Study or subgroup Andrews 2004	WBRT + SRS N 164	WBRT N 167	log [Hazard Ratio] (SE) -0.18 (0.12)	Hazard Ratio IV,Random,95% CI 	Weight 92.8 %	Hazard Ratio IV,Random,95% Cl 0.84 [0.66, 1.06]
Study or subgroup Andrews 2004 Kondziolka 1999	WBRT + SRS N 164 13	WBRT N 167 14	log [Hazard Ratio] (SE) -0.18 (0.12) -0.52 (0.43)	Hazard Ratio IV,Random,95% Cl	Weight 92.8 % 7.2 %	Hazard Ratio IV,Random,95% Cl 0.84 [0.66, 1.06] 0.59 [0.26, 1.38]
Study or subgroup Andrews 2004 Kondziolka 1999 Total (95% CI)	WBRT + SRS N 164 13 177	WBRT N 167 14 181	log [Hazard Ratio] (SE) -0.18 (0.12) -0.52 (0.43)	Hazard Ratio IV,Random,95% CI	Weight 92.8 % 7.2 % 100.0 %	Hazard Ratio IV,Random,95% Cl 0.84 [0.66, 1.06] 0.59 [0.26, 1.38] 0.82 [0.65, 1.02]
Study or subgroup Andrews 2004 Kondziolka 1999 Total (95% CI) Heterogeneity: Tau ² = 0	WBRT + SRS N 164 13 177 0.0; Chi ² = 0.58, df =	WBRT N 167 14 181 I (P = 0.45);	log [Hazard Ratio] (SE) -0.18 (0.12) -0.52 (0.43) ² =0.0%	Hazard Ratio IV,Random,95% CI	Weight 92.8 % 7.2 % 100.0 %	Hazard Ratio IV,Random,95% Cl 0.84 [0.66, 1.06] 0.59 [0.26, 1.38] 0.82 [0.65, 1.02]
Study or subgroup Andrews 2004 Kondziolka 1999 Total (95% CI) Heterogeneity: Tau ² = 0 Test for overall effect: Z	WBRT + SRS N 164 13 177 0.0; Chi ² = 0.58, df = = 1.77 (P = 0.077)	WBRT N 167 14 181 I (P = 0.45);	log [Hazard Ratio] (SE) -0.18 (0.12) -0.52 (0.43) I ² =0.0%	Hazard Ratio IV,Random,95% CI	Weight 92.8 % 7.2 % 100.0 %	Hazard Ratio IV,Random,95% Cl 0.84 [0.66, 1.06] 0.59 [0.26, 1.38] 0.82 [0.65, 1.02]
Study or subgroup Andrews 2004 Kondziolka 1999 Total (95% CI) Heterogeneity: Tau ² = (Test for overall effect: Z Test for subgroup differe	WBRT + SRS N 164 13 177 0.0; Chi ² = 0.58, df = 177 (P = 0.077) ences: Not applicable	WBRT N 167 14 181 I (P = 0.45);	log [Hazard Ratio] (SE) -0.18 (0.12) -0.52 (0.43) ² =0.0%	Hazard Ratio IV,Random,95% CI	Weight 92.8 % 7.2 % 100.0 %	Hazard Ratio IV,Random,95% Cl 0.84 [0.66, 1.06] 0.59 [0.26, 1.38] 0.82 [0.65, 1.02]
Study or subgroup Andrews 2004 Kondziolka 1999 Total (95% CI) Heterogeneity: Tau ² = 0 Test for overall effect: Z Test for subgroup differe	WBRT + SRS N 164 13 177 0.0; Chi ² = 0.58, df = 1.77 (P = 0.077) ences: Not applicable	WBRT N 167 14 181 I (P = 0.45);	log [Hazard Ratio] (SE) -0.18 (0.12) -0.52 (0.43) ² =0.0%	Hazard Ratio IV,Random,95% Cl	Weight 92.8 % 7.2 % 100.0 %	Hazard Ratio IV,Random,95% Cl 0.84 [0.66, 1.06] 0.59 [0.26, 1.38] 0.82 [0.65, 1.02]
Study or subgroup Andrews 2004 Kondziolka 1999 Total (95% CI) Heterogeneity: Tau ² = 0 Test for overall effect: Z Test for subgroup differe	WBRT + SRS N 164 13 177 0.0; Chi ² = 0.58, df = 1 = 1.77 (P = 0.077) ences: Not applicable	WBRT N 167 14 181 I (P = 0.45);	log [Hazard Ratio] (SE) -0.18 (0.12) -0.52 (0.43) ² =0.0%	Hazard Ratio IV,Random,95% CI	Weight 92.8 % 7.2 % 100.0 %	Hazard Ratio IV,Random,95% Cl 0.84 [0.66, 1.06] 0.59 [0.26, 1.38] 0.82 [0.65, 1.02]
Study or subgroup Andrews 2004 Kondziolka 1999 Total (95% CI) Heterogeneity: Tau ² = 0 Test for overall effect: Z Test for subgroup differe Survival	WBRT + SRS N 164 13 177 0.0; Chi ² = 0.58, df = C = 1.77 (P = 0.077) ences: Not applicable	WBRT N 167 14 181 I (P = 0.45);	log [Hazard Ratio] (SE) -0.18 (0.12) -0.52 (0.43) ² =0.0%	Hazard Ratio IV,Random,95% CI	Weight 92.8 % 7.2 % 100.0 %	Hazard Ratio IV,Random,95% Cl 0.84 [0.66, 1.06] 0.59 [0.26, 1.38] 0.82 [0.65, 1.02]

Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial

Eric L Chang, Jeffrey S Wefel, Kenneth R Hess, Pamela K Allen, Frederick F Lang, David G Kornguth, Rebecca B Arbuckle, J Michael Swint, Almon S Shiu, Moshe H Maor, Christina A Meyers Lancet Oncol 2009; 10: 1037-44

Probability of significant neurocognitive decline

	Stereotactic radiosurgery plus whole-brain radiotherapy (N=11)	Stereotactic radiosurgery alone (N=20)
Total recall	52%	24%
Delayed recall	22%	6%
Delayed recognition	11%	0%

Neurocognitive functioning and health-related quality of life in patients treated with stereotactic radiotherapy for brain metastases: a prospective study

Neuro-Oncology 2015; 0, 1–10, doi:10.1093/neuonc/nov186 Esther J.J. Habets, Linda Dirven, Ruud G. Wiggenraad, Antoinette Verbeek-de Kanter, et al

N=97

Median survival :7.7mo 1yr survival: 30%

Pre SRS: 53% below expected in at least 1 domain

Compliance: 84% at 6months

Stereotactic radiosurgery for multiple brain metastases

Tai-Chung Lam¹, Arjun Sahgal², Eric L Chang³ and Simon S Lo*⁴

Expert Rev. Anticancer Ther. Early online, 1-20 (2014)

- Stereotactic radiosurgery (SRS) for brain metastases gives consistently high local control rates of approximately 70–90% at 1 year, with minimal acute side effects and a low risk of symptomatic radiation necrosis (<10%).
- Efficacy of SRS is considered to be equivalent to neurosurgical excision in lesions smaller than 3 cm in diameter.
- SRS alone for newly diagnosed, limited brain metastases (1–4) is associated with better preserved neurocognitive function and quality of life compared to SRS plus upfront WBRT.
- Patients who receive radiation treatments for brain metastases must be followed up by close surveillance with MRI as distant intracranial recurrence rates are high – consistently approximately 30–50% at 1 year Repeating focal treatment either with SRS or surgical treatment was feasible in selected patients.
- Salvage treatment for symptomatic recurrence after SRS alone treatment is associated with worse outcomes than asymptomatic recurrence.
- There is adequately powered level II evidence showing that OS of patients with 2–4 brain metastases is similar to 5–10 metastases after SRS alone treatment, provided that the total tumor volume is less than 15 ml, the largest tumor is less than 10 ml or less than 3 cm in diameter, performance status of patients is ≥70 and there is no evidence of leptomeningeal metastases.

Solitary brain metastases

- Operable single lesions: surgery
- Postop radiotherapy recommended – SRS
- Inoperable 1-4 lesions: SRS alone

Multiple brain metastases

- Radiotherapy

 Dose fractionation
 Patient selection
- Chemotherapy
 Patient selection

Whole brain radiotherapy for the treatment of newly diagnosed multiple brain metastases (Review)

2012 The Cochrane Collaboration.

Tsao MN, Lloyd N, Wong RKS, Chow E, Rakovitch E, Laperriere N, Xu W, Sahgal A

Dose >30Gy/10f vs 30Gy/10f control

SURVIVAL

Study or subgroup	log [Hazard Ratio] (SE)	Hazard Ratio IV,Fixed,95% Cl	Weight	Hazard Ratio IV,Fixed,95% CI
Chatani 1985	-0.7487 (0.2907)	-	6.9 %	0.47 [0.27, 0.84]
Chatani 1994	0.0435 (0.2169)	+	12.4 %	1.04 [0.68, 1.60]
Kurtz 1981	-0.0747 (0.1367)	-	31.2 %	0.93 [0.71, 1.21]
Murray 1997	0.0698 (0.1085)	-	49.5 %	1.07 [0.87, 1.33]
Total (95% CI)		•	100.0 %	0.97 [0.83, 1.12]
Dose <30Gy/1	Of vs 30Gy/10f cont	rol		
Study or subgroup	log [Hazard Ratio] (SE)	Hazard Ratio IV,Fixed,95% CI	Weight	Hazard Ratio IV,Fixed,95% Cl
Chatani 1994	0.0171 (0.239)	·+·	10.0 %	1.02 [0.64, 1.63]
Harwood 1977	0.3461 (0.199)	-	14.4 %	1.41 [0.96, 2.09]
Priestman 1996	0.179 (0.087)		75.5 %	1.20 [1.01, 1.42]
Total (95% CI)		•	100.0 %	1.21 [1.04, 1.40]

Whole brain radiotherapy for the treatment of newly diagnosed multiple brain metastases (Review)

2012 The Cochrane Collaboration.

Tsao MN, Lloyd N, Wong RKS, Chow E, Rakovitch E, Laperriere N, Xu W, Sahgal A

Dose >30Gy/10f vs 30Gy/10f control

NEUROLOGICAL FUNCTION

Study or subgroup	Higher dose	Control dose	Odds Ratio M-	Weight	Odds Ratio M-
	n/N	n/N	Cl		Cl
Borgelt 1980	346/741	156/359	-	74.1 %	I.I4 [0.88, I.47]
Chatani 1985	25/34	26/35	10 10	4.1 %	0.96 [0.33, 2.82]
Chatani 1994	32/46	57/81		7.7 %	0.96 [0.44, 2.12]
Kurtz 1981	45/86	44/98		14.1 %	1.35 [0.75, 2.41]
Total (95% CI)	907	573	•	100.0 %	1.14 [0.92, 1.42]
Dose <30Gy	/10f vs 30Gy	//10f control			
Study or subgroup	Lower dose	Control dose	Odds Ratio	Weight	Odds Ratio
	n/N	n/N	H,Random,95% Cl		H,Random,95%
Harwood 1977	22/51	18/50		16.3 %	1.35 [0.61, 3.00]
Borgelt 1980	250/353	156/359	-	25.9 %	3.16 [2.32, 4.31]
Borgelt 1981	38/68	41/82		19.3 %	1.27 [0.66, 2.42]
Chatani 1994	29/35	57/81		13.1 %	2.04 [0.75, 5.53]
Priestman 1996	163/270	142/263		25.3 %	1.30 [0.92, 1.83]
Total (95% CI)	777	835	-	100.0 %	1.74 [1.06, 2.84]

MEMORY FUNCTION BEFORE AND AFTER WHOLE BRAIN RADIOTHERAPY IN PATIENTS WITH AND WITHOUT BRAIN METASTASES

GRIT WELZEL, M.Sc.,* KATHARINA FLECKENSTEIN, M.D.,*[†] Jörg Schaefer, M.D.,* Brigitte Hermann, M.D.,* Uta Kraus-Tiefenbacher, M.D.,* Sabine K. Mai, M.D.,* AND Frederik Wenz, M.D.*

* Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany; and [†]Department of Radiation Oncology, Duke University Medical Center, Durham, NC

Int. J. Radiation Oncology Biol. Phys., Vol. 72, No. 5, pp. 1311-1318, 2008

Neurocognitive Effects Following Cranial Irradiation for Brain Metastases Clinical Oncology 27 (2015) 630–639

M.B. Pinkham^{*}†, P. Sanghera‡, G.K. Wall§, B.D. Dawson§, G.A. Whitfield^{*}

Hippocampal sparing

Neurocognitive Effects Following Cranial Irradiation for Brain Metastases Clinical Oncology 27 (2015) 630–639

M.B. Pinkham^{*}[†], P. Sanghera[‡], G.K. Wall[§], B.D. Dawson[§], G.A. Whitfield^{*}

Hippocampal sparing

3300.0 cGy 2850.0 cGy 2600.0 cGy 2350.0 cGy 1500.0 cGy 1000.0 cGy

Evaluating the Impact of Hippocampal Sparing During Whole Brain Radiotherapy on Neurocognitive Functions: A Preliminary Report of a Prospective Phase II Study

(Biomed J 2015;38:439-449)

Shinn-Yn Lin^{1,2,3}, Chi-Cheng Yang⁴, Yi-Ming Wu⁵, Chen-Kan Tseng^{1,2}, Kuo-Chen Wei⁶, Yi-Chuan Chu⁷, Hsiang-Yao Hsieh⁷, Tung-Ho Wu^{1,2}, Ping-Ching Pai^{1,2}, Peng-Wei Hsu⁶, Chi-Cheng Chuang⁶

Chemotherapy for brain metastases

- Highly chemosensitive tumours:
 Germ cell, Lymphoma
- Moderate chemosensitive tumour: – SCLC
 - Breast

Chemotherapy for brain metastases: Choriocarcinoma Rustin et al

- 25 patients: 22 on CT (18 solitary)
 3 raised CSF HCG
- EMA CO:
 - 18 primary presentation: 13/18 CR
 - -7 recurrences:

13/18 CR 2/7 CR

Chemotherapy for brain metastases: Germ cell

- Fossa et al: 56 45% CSS
- Bokemeyer et al: 18 33% survived
- Lester et al: 5 80% survival
- Rustin et al: 10 80% survival

Systemic treatments for brain metastases from breast cancer, non-small cell lung cancer, melanoma and renal cell carcinoma: An overview of the literature Cancer Treatment Reviews 40 (2014) 951-959

Breast

Giorgio et al. [24]

Quantin et al. [22]

30

23

TMZ

RT+vinorelbine-ifosfamide-cisplatin

Author	PTS	Regimen	RR (%)	PFS (ms)	OS (ms)
Cytotoxic drugs					
Freedman et al. [7]	15	Sagopilone	13.3	1.4	5.3
Siena et al. [5]	51	Temozolomide	4	1.9	NR
Cassier et al. [3]	25	Cisplatin + vinorelbine + RT	76	3.7	6.5
Rivera et al. [6]	24	Capecitabine + temozolomide	18	12 wks	NA
Franciosi et al. [4]	56	Cisplatin + etoposide	38	4	8
Targeted therapies					
Brufsky et al. [8]	258	Trastuzumab vs. no use	NA	NA	17.5 vs. 3.9
Lin et al. [11]	39	Lapatinib	2.6	3	NR
	242	Lapatinib	6	2.4	6.4
Lin et al. [12]	(50)	(Lapatinib + capecitabine)	(20)	(3.6)	
Lin et al. [13]	22	Lapatinib + capecitabine vs. lapatinib + topotecan	38 vs. 0	NA	NA
Bachelot et al. [14]	44	Lapatinib + capecitabine	66	5.5	17
Lin et al. [15]	35	Lapatinib + RT	79	4.8	19
Lung					
Author	PTS	Regimen	RR (%)	mPFS (ms)	OS (ms)
Franciosi et al. [4]	43	Cisplatin-etoposide	30	4	8
Cortes et al. [20]	26	Cisplatin-taxol	38	3.2	5.3
Cotto et al. [77]	31	Cisplatin-fotemustine	23	5	4
Fujita et al. [78]	30	Cisplatine-ifosfamide-CPT11	50	4.6	12
Dinglin et al. [19]	42	Pemetrexed-cisplatin	68	10.6	12.6
Kleisbauer et al. [21]	24	Cisplatin	30	NA	NA
Siena et al. [5]	53	TMZ	NA	66 days	172 days

10

30

3.6 ms

NA

6 ms

7.6

Systemic treatments for brain metastases from breast cancer, non-small cell lung cancer, melanoma and renal cell carcinoma: An overview of the literature Cancer Treatment Reviews 40 (2014) 951–959

Melanoma

Author	PTS	Regimen	RR (%)	mPFS (wks)	mOS (wks)
Jacquillat et al. [39]	36	Fotemustine	25	NA	NA
Avril et al. [40]	22	Fotemustine	5.9	NA	NA
Mornex et al. [41]	37	Fotemustine + RT	10	8	15
Margolin et al. [42]	31	Temozolomide + RT	9	8	24
Atkins et al. [43]	39	Temozolomide + RT + Talidomide	7.6	7	16
Margolin et al. [50]	51	Ipilimumab	16	10.7	28
Queirolo et al. [51]	146	Ipilimumab	11	11.2	17.2
Falchook et al. [54]	10	Dabrafenib	90	16.8	32
Dummer et al. [56]	24	Vemurafenib	52	16	30

Lung

Renal

Author	PTS	Regimen	RR (%)	mPFS (ms)	OS (ms)
Ceresoli et al. [32]	41	Gefitinib	10	3	5
Chiu et al. [26]	21	Gefitinib	76	5	9.9
Wu et al. [33]	44	Gefitinib	38	9	13
Kim et al [25]	23	Gefitinib/ erlotinib	69	7.1	18.8
Welsh et al. [30]	40	Erlotinib + RT	86	NA	19.1

Authors	PTS	Regimen	RR (%)	mPFS (ms)	mOS (ms)
Gore et al. [66]	213	Sunitinib	12	5.6	9.2
Stadler et al. [68]	70	Sorafenib	4	NA	NA
Zustovich et al. [76]	4	Bevacizumab	75	26.3*	33.2

Recommendations on Disease Management for Patients With Advanced Human Epidermal Growth Factor Receptor 2–Positive Breast Cancer and Brain Metastases: American Society of Clinical Oncology Clinical Practice Guideline

J Clin Oncol 32:2100-2108. © 2014

Key Recommendations

- For patients with a favorable prognosis for survival and a single brain metastasis, treatment options include surgery with postoperative radiation, stereotactic radiosurgery (SRS), whole-brain radiotherapy (WBRT; ± SRS), fractionated stereotactic radiotherapy (FSRT), and SRS (± WBRT), depending on metastasis size, resectability, and symptoms. After treatment, serial imaging every 2 to 4 months may be used to monitor for local and distant brain failure.
- For patients with a favorable prognosis for survival and limited (two to four) metastases, treatment options include resection for large symptomatic lesion(s) plus postoperative radiotherapy, SRS for additional smaller lesions, WBRT (± SRS), SRS (± WBRT), and FSRT for metastases > 3 to 4 cm. For metastases < 3 to 4 cm, treatment options include resection with postoperative radio-therapy. In both cases, available options depend on resectability and symptoms.

Targeting brain metastases in ALK-rearranged non-small-cell lung cancer

Isabella Zhang, Nicholas G Zaorsky, Joshua D Palmer, Ranee Mehra, Bo Lu

Lancet Oncol 2015; 16: e510-21

25 case reports!

Evolving treatment options for melanoma brain metastases

Thankamma Ajithkumar, Christine Parkinson, Kate Fife, Pippa Corrie, Sarah Jefferies

Lancet Oncol 2015; 16: e486-97

Ipilimumab

Venmurafenib

13 open trials15 published

Modern systemic therapies for metastatic melanoma have proven effective even when no brain involvement exists. For patients with *BRAF*-mutant melanoma, BRAF-targeted agents could be used preferentially to radiotherapy while the potential benefits and risks of the combination of radiotherapy and immunotherapy are still being studied (figure 2).

Multiple brain metastases

- Radiotherapy

 Dose fractionation
 Patient selection
- Chemotherapy
 Patient selection

The clinical utility of prognostic scoring systems in patients with brain metastases treated with radiosurgery

Jaap D. Zindler^a, George Rodrigues^b, Cornelis J.A. Haasbeek^a, Patricia F. De Haan^a, Otto W.M. Meijer^a, Ben J. Slotman^a, Frank J. Lagerwaard^{a,*} Radiotherapy and Oncology 106 (2013) 370–374

Baseline characteristics included in various prognostic scoring systems for patients with brain metastases.

	RPA	Rotterdam	SIR	BSBM	GPA	DS-GPA	Rades	GGS
Primary tumor control								
Extracranial metastases								
Performance status								
Age								
Interval primary-BM								
Volume BM								
Number BM								
Steroid response								
Primary tumor site								
					Fac	tor in classi	fication	

Factor not in classification

Favorable prognosis Intermediate favorable prognosis Intermediate unfavorable prognosis Unfavorable prognosis

Zindler et al

Radiotherapy and Oncology 106 (2013) 370-374

Recursive partitioning of prognostic factors in RTOG trial

1200 patients

Recursive partitioning of prognostic factors in RTOG trial

1200 patients

Recursive partitioning of prognostic factors in RTOG trial

Prognosis of Patients With Brain Metastases by Diagnosis-Specific Graded Prognostic Assessment (DS-GPA) Score

Lung Cancer	GPA S	coring (Criteria		
Prognostic Factor	0	0.5	1.0		
Age, years	> 60	50-60	< 50		
KPS	< 70	70-80	90-100		
ECM	+	n/a	-		
No. of BM	> 3	2-3	1		
				Total S	Score =
Melanoma	GPA Scoring Criteria				
Prognostic Factor	0	1.0	2.0		
KPS	< 70	70-80	90-100		
No. of BM	> 3	2-3	1		
				Total S	Score =
Breast Cancer	GPA S	coring (Criteria		
Prognostic Factor	0	0.5	1.0	1.5	2.0
KPS	≤ 50	60	70-80	90-100) n/a
Subtype	Basal	n/a	LumA	HER2	LumB
Age, years	≥ 60	< 60	n/a	n/a	n/a
				Total S	Score =
Renal Cell Carcinoma	GPA S	coring (Criteria		
Prognostic Factor	0	1.0	2.0		Str.
KPS	< 70	70-80	90-100		
No. of BM	> 3	2-3	1		
				Total S	Score =
GI Cancers	GPA Scoring C			riteria	
Prognostic Factor	0	1	2	3	4
KPS	< 70	70	80	90	100
				Total S	Score =

Total Score	Median Survival Time in	Months (95% CI)
Lung Cancer	NSCLC	SCLC
0-1.0	3.02 (2.63 to 3.84)	2.79 (1.83 to 3.12)
1.5-2.0	5.49 (4.83 to 6.40)	4.90 (4.04 to 6.51)
2.5-3.0	9.43 (8.38 to 10.80)	7.67 (6.27 to 9.13)
3.5-4.0	14.78 (11.80 to 18.80)	17.05 (4.70 to 27.43)
Melanoma		
0-1.0	3.38 (2.53 to 4.27)	
1.5-2.0	4.70 (4.07 to 5.39)	
2.5-3.0	8.77 (6.74 to 10.77)	
3.5-4.0	13.23 (9.13 to 15.64)	
Breast Cancer		
0–1.0	3.35 (3.13 to 3.78)	
1.5-2.0	7.70 (5.62 to 8.74)	
2.5-3.0	15.07 (12.94 to 15.87)	
3.5-4.0	25.30 (23.10 to 26.51)	
Renal Cell Card	cinoma	
0-1.0	3.27 (2.04 to 5.10)	
1.5-2.0	7.29 (3.73 to 10.91)	
2.5-3.0	11.27 (8.80 to 14.80)	
3.5-4.0	14.77 (9.73 to 19.79)	
GI Cancers		
0-1.0	3.13 (2.37 to 4.57)	
1.5-2.0	4.40 (3.37 to 6.53)	
2.5-3.0	6.87 (4.86 to 11.63)	
3.5-4.0	13.54 (9.76 to 27.12)	

Xuling Lin and Lisa M. DeAngelis J Clin Oncol 33:3475-3484. © 2015

Prognostic Indexes for Brain Metastases: Which Is the Most Powerful? Int J Radiation Oncol Biol Phys, Vol. 83, No. 3, pp. e325-e330, 2012

Gustavo Arruda Viani, M.D., Lucas Godói Bernardes da Silva, M.D., and Eduardo Jose Stefano, M.D.

	Overall survival	р	
Variable	at 1 y (%)	(log-rank test)	
Rotterdam score		.001	
Class I	31		
Class II	18		
Class III	11		
BSBM		.002	
Class I	26		
Class II	17		
Class III	13		
Class IV	8		
Germany score		<.0001	
Class I	42		
Class II	35		
Class III	26		
Class IV	14		
RPA		<.0001	
Class I	44		
Class II	30		
Class III	16		
GPA		<.0001	
Class I	49		
Class II	27		
Class III	13		
Class IV	9		

recursive partitioning analysis; GPA = graded prognostic assessment.

Secondary Analysis of RTOG 9508, a Phase 3 Randomized Trial of Whole-Brain Radiation Therapy Versus WBRT Plus Stereotactic Radiosurgery in Patients With 1-3 Brain Metastases; Poststratified by the Graded Prognostic Assessment (GPA)

Paul W. Sperduto, MD, MPP, FASTRO,* Ryan Shanley, MS,[†] et al

Prognostic factor	GPA Scoring Criteria			
	0	0.5	1.0	
Age	>60	50-60	<50	
KPS	<70	70-80	90-100	
ECM	Present	-	Absent	
No. of BM	>3	2-3	1	

Int J Radiation Oncol Biol Phys, Vol. 90, No. 3, pp. 526-531, 2014

If the only tool you have is a hammer then you tend to see every problem as a nail'

Abraham Maslow

Evolving treatment options for melanoma brain metastases

Thankamma Ajithkumar, Christine Parkinson, Kate Fife, Pippa Corrie, Sarah Jefferies

Lancet Oncol 2015; 16: e486-97

Supportive care management of brain metastases: what is known and what we need to know [Tsao et al 2003]

'the optimal management of brain metastases remains elusive. The magnitude of benefit of using WBRT above supportive care alone is uncertain' Symptom response after palliative radiotherapy for patients with brain metastases [Bezjak et al 2002]

Neurological symptom response at 1 month

Symptom response after palliative radiotherapy for patients with brain metastases [Bezjak et al 2002]

Symptom response after palliative radiotherapy for patients with brain metastases [Bezjak et al 2002]

Interim Data from the Medical Research Council QUARTZ Trial: Does Whole Brain Radiotherapy Affect the Survival and Quality of Life of Patients with Brain Metastases from Non-small Cell Lung Cancer?

Interim Data from the Medical Research Council QUARTZ Trial: Does Whole Brain Radiotherapy Affect the Survival and Quality of Life of Patients with Brain Metastases from Non-small Cell Lung Cancer?

Cochrane meta-analysis 2007 & 2012

Supportive care versus whole brain radiotherapy

- There is a lack of high quality randomized evidence to clarify the value of WBRT versus supportive care alone
- Supportive care alone is an option (for example, for patients with poor performance status or widely disseminated cancer based on short life expectancy).
- There is lack of contemporary high quality trials to guide practitioners as to which subsets of patients with brain metastases should be managed with supportive care alone without whole brain radiotherapy.

Conclusion

- SOLITARY (1-4)
 - SURGERY + SRS
 - -SRS alone
- MULTIPLE
 - CHEMOTHERAPY for
 - GCT, LYMPHOMA
 - ?breast, SCLC,
 - ??ALK+ve NSCLC, B-RAF+ve melanoma
 - -WBRT
 - RPA I/II
 - -BSC
 - RPA III